PERAMALAN JUMLAH PENUMPANG DOMESTIK DI YOGYAKARTA INTERNATIONAL AIRPORT

Authors

  • Subandi Subandi Akademi Manajemen Administrasi Yogyakarta

DOI:

https://doi.org/10.56606/albama.v17i1.178

Keywords:

Forecasting Model, Passenger, ARIMA

Abstract

This research is quantitative descriptive research which aims to make predictions using the ARIMA model time series forecasting method. The data obtained was analyzed using the R program. The data used for forecasting is the number of arrivals and departures of domestic passengers at Yogyakarta International Airport for the period January 2022 – December 2023. Based on the results of data analysis, it is known that the ARIMA model time series forecasting method is the best for predicting the number of arrivals. and domestic passenger departures at Yogyakarta International Airport are the AR (1,0,0) model. This method was chosen because the results were significant, met the white noise requirements and had the smallest MAPE value.

Downloads

Download data is not yet available.

References

Angakasa Pura I. (2024). Bandara Internasional Yogyakarta Catat Pertumbuhan Trafik Hingga 81 Persen. Diambil dari https://yogyakarta-airport.co.id/id/berita/index/bandara-internasional-yogyakarta-catat-pertumbuhan-trafik-hingga-81-persen-1

Annex 14. (n.d.). ICAO (International Civil Aviation Organization).

Badan,Pusat,Statistik,DIY. (2024). Jumlah Penumpang Domestik Angkutan Udara di Bandara Yogyakarta Internasional Airport. Diambil dari https://yogyakarta.bps.go.id/indicator/17/349/1/jumlah-penumpang-domestik-angkutan-udara-di-bandara-yogyakarta-internasional-airport.html

Banjarnahor, A., Sari, O., Simanjuntak, M., Nur, N., Sudirman, Mukrim, M., … Rachim, F. (2021). Manajemen Transportasi Udara. Medan: Yayasan Kita Menulis.

Cahyati, E. E. (2017). Peramalan Jumlah Penumpang Pesawat Yang Berangkat Pada Penerbangan Domestik Di Bandar Udara Juanda Surabaya Menggunakan Arima Box-Jenkins. Institut Teknologi Sepuluh Nopember.

Cryer, J. D., & Chan, K.-S. (2008). Time Series Analysis With Applications in R (2 ed.). Iowa: Springer.

Hayoto, S., Lesnussa, Y. A., Patty, H. W. M., & Djami, R. J. (2019). Peramalan Jumlah Penumpang Pesawat Terbang Di Pintu Kedatangan Bandar Udara Internasional Pattimura Ambon Dengan Menggunakan Metode Arima Box-Jenkins. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 13(3), 135–144. https://doi.org/10.30598/barekengvol13iss3pp135-144ar883

Jay, H., & Render, B. (2009). Manajemen Operasi (9 ed.). Jakarta: Salemba Empat.

Makridakis, S., Wheelwright, S. C., & McGee, V. E. (1999). Metode dan aplikasi: peramalan. (2, Ed.). Jakarta: Erlangga.

Mutiara, A., & Kurniawan, M. (2022). Penerapan Metode ARIMA dan Double Exponential Smoothing with Damped Parameter Untuk Memprediksi Jumlah Keberangkatan Penumpang Pesawat Komersial di Jawa Tengah Pada Tahun 2022-2023. Emerging Statistics and Data Science Journal, 1(1), 57–69.

Peraturan Menteri Perhubungan. (2013). Peraturan Menteri No. 69 Tahun 2013 tentang Tatanan Kebandarudaraan Nasiona. Jakarta.

Downloads

Published

2024-07-22

How to Cite

Subandi, S. (2024). PERAMALAN JUMLAH PENUMPANG DOMESTIK DI YOGYAKARTA INTERNATIONAL AIRPORT. ALBAMA: JURNAL BISNIS ADMINISTRASI DAN MANAJEMEN, 17(1), 40–48. https://doi.org/10.56606/albama.v17i1.178